

Charged Particle ∆ Correlations

- Look at charged particle correlations in the azimuthal angle Δφ relative to the leading charged particle jet.
- **▶** Define $|\Delta\phi| < 60^{\circ}$ as "Toward", $60^{\circ} < |\Delta\phi| < 120^{\circ}$ as "Transverse", and $|\Delta\phi| > 120^{\circ}$ as "Away".
- \Rightarrow All three regions have the same size in η-φ space, $\Delta \eta x \Delta \phi = 2x120^\circ = 4\pi/3$.

"Transverse" Nchg versus P_T(chgjet#1)

Blessed on 11/3/99

- Plot shows the "Transverse" <N_{chg}> versus P_T(chgjet#1) compared to the QCD hard scattering predictions of Herwig 5.9, Isajet 7.32, and Pythia 6.115 (default parameters with P_T(hard)>3 GeV/c).
- \rightarrow Only charged particles with $|\eta| < 1$ and $P_T > 0.5$ GeV are included and the QCD Monte-Carlo predictions have been corrected for efficiency.

"Transverse" P_T Distribution

- Plot shows the P_T distribution of the "Transverse" <N_{chg}>, dN_{chg}/dP_T. The integral of dN_{chg}/dP_T is the "Transverse" <N_{chg}>.
- The triangle and circle (square) points are the Min-Bias (JET20) data. The errors on the (uncorrected) data include both statistical and correlated systematic uncertainties.

Blessed on 5/4/01

"Max/Min Transverse" Nchg versus P_T(chgjet#1)

Define "TransMAX" and "TransMIN" to be the maximum and minimum of the region $60^{\circ}<\Delta\phi<120^{\circ}$ ($60^{\circ}<-\Delta\phi<120^{\circ}$) on an event by event basis. The overall "transverse" region is the sum of "TransMAX" and "TransMIN". The plot shows the average "TransMAX" N_{chg} and "TransMIN" N_{chg} versus P_{T} (charged jet#1).

The solid (open) points are the Min-Bias (JET20) data. The errors on the (uncorrected) data include both statistical and correlated systematic uncertainties.

"Max-Min Transverse" Nchg versus P_T(chgjet#1)

To be Blessed

- Define "TransMAX" and "TransMIN" to be the maximum and minimum of the region $60^{\circ}<\Delta\phi<120^{\circ}$ ($60^{\circ}<-\Delta\phi<120^{\circ}$) on an event by event basis. The plot shows the average difference between the "TransMAX" N_{chg} and the "TransMIN" N_{chg} versus P_{T} (charged jet#1).
- The solid (open) points are the Min-Bias (JET20) data. The errors on the (uncorrected) data include both statistical and correlated systematic uncertainties.

"Max/Min Transverse" PTsum versus P_T(chgjet#1)

Define "TransMAX" and "TransMIN" to be the maximum and minimum of the region $60^{\circ}<\Delta\phi<120^{\circ}$ ($60^{\circ}<-\Delta\phi<120^{\circ}$) on an event by event basis. The overall "transverse" region is the sum of "TransMAX" and "TransMIN". The plot shows the average "TransMAX" PT_{sum} and "TransMIN" PT_{sum} versus P_{T} (charged jet#1)..

The solid (open) points are the Min-Bias (JET20) data. The errors on the (uncorrected) data include both statistical and correlated systematic uncertainties.

To be Blessed

- Define "TransMAX" and "TransMIN" to be the maximum and minimum of the region $60^{\circ}<\Delta\phi<120^{\circ}$ ($60^{\circ}<-\Delta\phi<120^{\circ}$) on an event by event basis. The plot shows the average difference between the "TransMAX" PT_{sum} and the "TransMIN" PT_{sum} versus P_T(charged jet#1).
- The solid (open) points are the Min-Bias (JET20) data. The errors on the (uncorrected) data include both statistical and correlated systematic uncertainties.

"Max/Min Transverse" Nchg versus P_T(chgjet#1)

- The plot shows the data on the average "TransMAX" N_{chg} and "TransMIN" N_{chg} versus P_{T} (charged jet#1) compared with the QCD Monte-Carlo model predictions of Herwig 5.9, Isajet 7.32, and Pythia 6.115.
- Herwig and Isajet have their default parameters with $P_T(hard) > 3$ GeV/c. Pythia has been tuned (CTEQ4L, MSTP(82)=3, P_{T0} =PARP(82)=1.8 GeV/c) and has $P_T(hard) > 0$ GeV/c.

"Max-Min Transverse" Nchg versus P_T(chgjet#1)

- The plot shows the data on the average difference between the "TransMAX" N_{chg} and the "TransMIN" N_{chg} versus P_{T} (charged jet#1) compared with the QCD Monte-Carlo model predictions of Herwig 5.9, Isajet 7.32, and Pythia 6.115.
- Herwig and Isajet have their default parameters with $P_T(hard) > 3$ GeV/c. Pythia has been tuned (CTEQ4L, MSTP(82)=3, P_{T0} =PARP(82)=1.8 GeV/c) and has $P_T(hard) > 0$ GeV/c.

"Max/Min Transverse" PTsum versus P_T(chgjet#1)

- → The plot shows the data on the average "TransMAX" PT_{sum} and "TransMIN" PT_{sum} versus P_T(charged jet#1) compared with the QCD Monte-Carlo model predictions of Herwig 5.9, Isajet 7.32, and Pythia 6.115.
- Herwig and Isajet have their default parameters with $P_T(hard) > 3$ GeV/c. Pythia has been tuned (CTEQ4L, MSTP(82)=3, P_{T0} =PARP(82)=1.8 GeV/c) and has $P_T(hard) > 0$ GeV/c.

- The plot shows the data on the average difference between the "TransMAX" PT_{sum} and the "TransMIN" PT_{sum} versus P_T(charged jet#1) compared with the QCD Monte-Carlo model predictions of Herwig 5.9, Isajet 7.32, and Pythia 6.115.
- Herwig and Isajet have their default parameters with $P_T(hard) > 3$ GeV/c. Pythia has been tuned (CTEQ4L, MSTP(82)=3, P_{T0} =PARP(82)=1.8 GeV/c) and has $P_T(hard) > 0$ GeV/c.

ISAJET: "Transverse" Nchg versus P_T(chgjet#1)

- Plot shows the "transverse" <N_{chg}> vs P_T(chgjet#1) compared to the QCD hard scattering predictions of ISAJET 7.32 (default parameters with P_T(hard)>3 GeV/c).
- → The predictions of ISAJET are divided into three categories: charged particles that arise from the break-up of the beam and target (beam-beam remnants), charged particles that arise from initial-state radiation, and charged particles that result from the outgoing jets plus final-state radiation.

ISAJET: "TransMAX" Nchg versus P_T(chgjet#1)

- ▶ Plot shows the "transMAX" <N_{chg}> vs P_T(chgjet#1) compared to the QCD hard scattering predictions of ISAJET 7.32 (default parameters with P_T(hard)>3 GeV/c).
- The predictions of ISAJET are divided into three categories: charged particles that arise from the break-up of the beam and target (beam-beam remnants), charged particles that arise from initial-state radiation, and charged particles that result from the outgoing jets plus final-state radiation.

ISAJET: "TransMIN" Nchg versus P_T(chgjet#1)

- ▶ Plot shows the "transMIN" <N_{chg}> vs P_T(chgjet#1) compared to the QCD hard scattering predictions of ISAJET 7.32 (default parameters with P_T(hard)>3 GeV/c).
- The predictions of ISAJET are divided into three categories: charged particles that arise from the break-up of the beam and target (beam-beam remnants), charged particles that arise from initial-state radiation, and charged particles that result from the outgoing jets plus final-state radiation.

ISAJET: "TransDIF" Nchg versus P_T(chgjet#1)

- Plot shows the difference between the "transMAX" and "transMIN" <N_{chg}> vs P_T (chgjet#1) compared to the QCD hard scattering predictions of ISAJET 7.32 (default parameters with P_T (hard)>3 GeV/c).
- The predictions of ISAJET are divided into three categories: charged particles that arise from the break-up of the beam and target (beam-beam remnants), charged particles that arise from initial-state radiation, and charged particles that result from the outgoing jets plus final-state radiation.